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I. Phys.: Condens. Matter 6 (1994) 4317-4327. Printed in the UK 

Theory of disordered contacts in high magnetic fields: weak 
disorder 

R B S Oakeshottt 
Blackett Laboratory, Imperial College. London SW7 282, UK 

Received 6 September 1993, in final form 17 March 1994 

Abstract. We consider a model of a weakly disordered wire connected to a clean sample. The 
disordered wire acts as an imperfect contact, coupled in varying degrees to different out going 
and in coming states in the sample. We consider here a strong magnetic field where the states are 
edge wtes, and scattering between the diffwent edge states is weak. We derive thc distribution 
between edge states of electrons emerging from an infinitely long, disordered current lead, and 
the sensitivity of an infinitely long voltage lead to electrons in different edge states, in terms of 
the ratio of the backscattering rate to the scattering rate between the inner and outer edge states 
on one side of the lead. Corrections for finite lead lengths are exponentially small so long as the 
lead is long compared to the backscattering length. We discuss how the results relate to recent 
experiments. 

1. Introduction 

We consider in this paper a model of a weakly disordered wire in a magnetic field. The wire 
is modelled in terms of the scattering between the edge states in the wire, and we consider 
particularly how such a wire behaves as a contact, or lead. The analysis is appropriate for 
weak disorder, where edge states are well defined. We consider in a separate paper the case 
of strong disorder. 

In a recent paper Geim et a1 [ 11 showed experimentally that a disordered contact gives 
a non-equilibrium. strongly temperature dependent, occupation of the different edge states 
that exist in a wire in a large magnetic field. 

From Biittiker [2] onwards it has been known that, in general, contacts are not ideal, 
that is they do not populate all modes equally. The general properties of such a disordered 
contact have been considered by Komiyama and Huai [3]. In this paper we consider the 
properties of a long disordered wire in a strong magnetic field, and show how such a wire 
behaves as a non-ideal contact. 

In the first part of the paper we discuss how the non-equilibrium distribution arises in 
terms of the difference between the backscattering rate and the scattering between adjacent 
edge states. We show how, in a coupled edge state model similar to that used by McEuen et 
ai 141, a long wire populates the edge states in a manner which is independent of the length 
of the wire. We find for weak interedge scattering a square root dependence of the relative 
occupation of the outgoing edge states upon the ratio between interedge state scattering on 
one side of the wire and backscattering. We gain some insight into the behaviour of the 
model, and the nature of the finite-length corrections, from considering a reduced model 
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Figure 1. We consider a disordered wire, with scauering between edge states on the one side of 
the wire, and backscattering between the two sides. A mervoir al one end of the wire absorbs 
demons from the right going edge stales, nnd equally populnles the leh going edge slates. At 
the other end the disordered wire is connected to a sample. We are interested in the response 
of the chemical potential of the reservoir lo the incoming cumnts j ,  and j, and in the relative 
size of the outgoing cumnls j ,  and j d .  

where we ask how many electrons in the innermost edge state are reflected back from the 
sample without ever being scattered to one of the outer edge states. Finally we discuss the 
consequences of this picture for the temperature dependence. 

2 Coupled edge state model 

We consider the system shown in figure 1. The system consists of a lead connecting an 
ideal reservoir to a sample, the lead being a disordered wire in a sufficientIy large magnetic 
field that the electrons are in edge states. It is known that equilibration between edge states 
in the quantum Hall regime is impeded by the spatial separation, and by the momentum 
difference, between the different edge states [5,6,7]. This is particularly so for equilibration 
between the innermost edge state and the outer edge states. We therefore assume that all 
the edge states, except the innermost, are in mutual equilibrium, and describe the system by 
the scattering rates between different edge states shown in the figure. Note that we assume 
that the only transfers are between the inner and the outer edge states, and that there is 
no backscattering between the two outer edge states in opposite directions: in other words, 
there is no direct transmission between the outer edge states on opposite sides of the sample, 
although electrons can pass between these states by a sequence of transfers. We make no 
assumption about the nature of the scattering between the edge states: so long as there is 
sufficient inelastic scattering that the currents in each state can be described by a single 
chemical potential (or equivalently by the current in the channel) the model is adequate to 
describe the occupation of the different states. 

To analyse the system, we assume that the scattering lengths are long compared with 
the width of the system, and decompose the system into short lengths, with currents as 
shown in figure 2. Throughout this paper we mean by current the excess current associated 
with some applied potential: there is of course a circulating current from electrons below 
the Fermi energy. With this understanding, the current in an edge state and the chemical 
potential of an edge state measured relative to some energy are equivalent: 

e’ 

2h 
j = -p .  
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4 Figure ZE 2. The wire is broken into kl shod sections like the one shown. lnteredge state scattering 

with rate a and backscattering with rate b lead to net currents between the edge states if their 
chemical potentials differ. 

The discussion in this paper is framed in terms of the currents in each edge state; the 
translation to chemical potentials where desired is trivial. For simplicity we consider the 
case with just two edge states. So long as the outer edge states are in mutual equilibrium, 
the extension to the case of several edge states is likewise trivial. 

For one section we have from current conservation that 
ki = j i  -aUz - j i )  

kz = j1 t a(jz  - i d  t b(j3 - k2) 

j ~ = k 3 + a ( k 4 - k 3 ) - b ( j 3 - k Z )  

j ,  = k4 - a ( k 4  - k d  

(2)  

where the currents k l ,  k z ,  . . . are defined with reference to figure 2. The coefficient a 
represents the interedge scattering, and the coefficient b the backscattering. (We make 
two comments. One could equivalently write down a set of differential equations for the 
evolution of the currents as Komiyama and Hirai did for the equilibrium between edge states 
on one side of a quantum Hall bar [3], when one would be interested in the limit a -+ 0, 
b --i 0, a/b = r. Also, terms such as a ( k 2  - kl) could be included in the equations, but 
make no material difference, and are irrelevant in the limit where the scattering rate in the 
given length is small.) 

We can rearrange (2) to find 

where 
I - '  - 0 0 2 2 T =  ( 5 8-l~+4a2~8b+&?b-o'b (2-o)b 

2(4-C-%+ob) 
(-2+n)b 

0 4-4a-B+0b 4 - C - W f o b  4-C-Zb+ab 

0 4-C-Zb+ob 4-C-Zb+ab 4-&-%+ob 
ob -2n 

which gives the evolution of the current distribution along the wire, and after N sections, 
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We now consider the relevant boundary conditions in a long lead. We assume that we 
have at one end of the lead an ideal reservoir, with chemical potential p which populates 
equally all the edge states leaving it, so that kl = kz = (e2/2h)p. (Note that whether or not 
the reservoir is actually ideal is irrelevant to the relative occupations of different modes by 
the wire, since the scattering in the wire will lead to the same eventual relative occupation 
of the modes, regardless of how the electrons are injected into the wire from the reservoir.) 
In general we then need to specify the currents incident on the lead from the sample, j l  

and j 2 ,  and either the net current in the wire, or the chemical potential of the reservoir. We 
will consider two special cases which we refer to as a voltage lead, and a current lead. The 
problem is linear, so the general case can be solved as a linear superposition of these two 
cases. 

The first case is a voltage lead, that is a lead with no net current flowing, the reservoir 
having a suitable chemical potential, which gives the measured voltage. The other boundary 
conditions are the incoming currents j l ,  j2 and the requirement that no net current flow: 
ki + kz + k3 + k4 = 0. 

The second case is a current lead, that is a lead in which there is a net current flowing 
in the lead, and where we are interested in the current flowing out of the lead and into the 
sample. As boundary conditions we impose jl = jz  = 0, that is no electrons are reflected 
back from the sample into the lead, and we choose a chemical potential fi .  If there is any 
current flowing into the lead, so that j l  or j2 is not zero, it will be partially reflected, and 
add to the current flowing out of the lead. 

2.1. Limiting behaviour 
Komiyama and Hirai have shown quite generally [3] that the response, p,  of a voltage 
lead with several incoming modes is a weighted average of the chemical potentials of the 
different modes. In our case the modes are the two edge states, so that 

where CY is the ratio between the sensitivity of the chemical potential of the reservoir to the 
current in the inner edge state, a p / a j 2 ,  and the sensitivity of the chemical potential of the 
reservoir to the cument in the outer edge state a p f a j , .  If there is no backscattering in the 
system. so that all electrons entering the disordered region reach the reservoir, then 01 = 1. 
If the backscattering is strong, compared with the equilibration between the inner and outer 
edge states, then (Y = 0, and the reservoir is only sensitive to electrons in the outer edge 
states: any electron coming into the lead in the inner edge state is backscattered without 
influencing the chemical potential of the reservoir. 

The lead has some resistance, dependent on the 
backscattering. More germane to our purpose, the channels going out from the disordered 
region into the clean wire, j3 and ja, are populated differently. In the absence of 
backscattering j3 and j4 are equal. In the limit of strong backscattering no current emerges 
in the outer edge state. (The general analysis of Komiyama and Hirai [31 shows that 
the response of a voltage lead to the different edge states is a weighted average of their 
potentials, and that the ratio of currents in the outgoing channels of a current lead, j ,  f j4 ,  
is the same as the ratio of the sensitivities of the reservoir’s chemical potential to the edge 
states for the voltage lead, (a@/aJ$/ (ap/ajI)) . )  

The relative occupations in this high magnetic field case are interestingly opposite to 
what has been observed in zero and low magnetic fields by Blaikie eta! [SI. In their case. 
the cyclotron radius was larger than, or comparable to, the sample width, and modes at the 
edge were preferentially scattered. 

Consider now a current lead. 
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2.2. Numerical behaviour 

We have not been able to solve (5) analytically for an infinite wire since the matrix T 
does not have a complete set of eigenvectors. We present here therefore numerical results 
showing the behaviour of current and voltage leads as a function of a / b .  In the next section 
we use the physical insight derived from the numerical solution to solve the problem. 

Figure 3. Relative occupation of edge states by a ~ u m n t  lead as a function of the ratio of 
scattering mtes. Inset is a log-log plot of lhe same data showing the square root behaviour for 
weak interedge scattering. 

Figure 3 shows the relative occupation of the inner edge state and the outer edge state 
emerging from the lead into the sample. (As we remark above, this is equivalent to the 
ratio of the sensitivity of the potential of the reservoir of a voltage lead to the inner and 
to the outer edge states incident on the lead from the sample.) We find that, for small U ,  

the occupation of the inner edge state is proportional to m, a feature which we explain 
below. For large a all the outgoing edge states are equally occupied, as expected from the 
discussion above. 

Figure 4 shows how the currents in the edge states vary along the length of a voltage 
lead. Close to the interface between the sample and the lead the potentials deviate towards 
the external values, going into the lead from the sample the chemical potentials decay 
exponentially towards an equilibrium value. The matrix T has eigenvalues 1, 1, A,  A-'. 
(The existence of a unit eigenvalue is obvious: equal chemical potentials in each mode 
forms a uniform solution. Since T-' describes the evolution of the chemical potentials in 
the opposite direction to T the eigenvalues must be in reciprocal pairs.) As figure 4 shows, 
the currents in the voltage lead are composed of a constant part plus a pari decaying into the 
lead away from the sample, which is described by the eigenvector of T with an eigenvalue 
smaller than unity. We use this observation in the next section to solve the problem. 

For a current lead, where there is dissipation along the length of the wire the situation 
is a little more complicated. The currents are shown in figure 5. In the interior of the 
lead, there is a constant current difference between the modes. Unlike the voltage lead the 
currents are forced to deviate from this pattern both at the entrance, and at the reservoir. 
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i 

Figure 4. Currents in the different edge slates in a voltage lead as a function of position away 
from the sample, in uNU of the slices the wire is divided inlo. II = 0.01, and b = 0.1. Unit 
currenl is injected from the sample in the inner of the hvo incoming edge states (jz). 

FIgure 5. Currents in the different edge slates in a current lead as a function of psition away 
from the sample, in unitc of the slices lhe wire is divided into. (I = 0.01, and b = 0.1. The 
outer pair of l i e s  is the ouler edge states. 

Well away from the interfaces between the lead and the sample, and between the lead and 
the reservoir, there is a constant voltage drop from one section to the next, so that the 
currents are described by the equation 

where 8p is the voltage drop across one of the sections of the wire. We can solve to find 
the currents 
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where c is an arbitrary constant, and the net current is 

2(1 - 4 / b - 2 / a ) 6 p .  (9) 

Note that as a or b goes to zero, so that either there is no backscattering, or the outer edge 
states are isolated from the backscattering, the current for a given potential drop along the 
wire diverges, that is, the resistance goes to zero, as it should in the quantum Hall regime. 

2.3. Solution 

We now use the fact that the currents at the end of a voltage lead can be decomposed into 
the uniform solution and the eigenvector of currents decaying into the sample to find the 
ratio of the potential response to the two input modes. Let the uniform solution be written 
( 1 1 1 1 ) , and the decaying solution be written ( x i  x2 x3 x.,) . Solving 

for p and B with j l  and j 2  fixed, we see that the ratio of sensitivities is 

The eigenvalues of T are 1 ,  and 

(8 - 8a + 4 2  - 4b + 4ab - a2b 
- 4a - 4b + abd-4a  - 26 + a b )  

x [2 (4 - 4a - 2b + a b ) ] - ' .  (12) 

The form of the eigenvector corresponding to the decaying mode is complicated, 
however, the ratio between the sensitivities is quite simple, and is given by 

which becomes in the limit a = br, b -+ 0, that is to say, in the limit where the scattering 
in each slice is weak, 

where the square root form of the sensitivity as a function of the ratio of scattering rates is 
evident. In the next section we present a simpler model which demonstrates how this form 
arises. 
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Jx -> ........ @,..!...,. @....',... @...!...,. 
JO 

inner edge state ; ap i ap :ap 

, ,  Lc 
auter edge state to reservoir 

Figure 6. Pseudo-abmrplion model. Only the cumnt flowing in the inner edge state is 
considered. Current is Vansmiued between adjacent sections with rate f and is absorbed 
(modelling transfer 10 the outer edge state) with mle ap. We are interested in .Ix, fie amounl of 
Current reflected from the wire without being uansferred into an outer edge stale, 

f 1 c 
.I l.,""* .............. /. ..., ... I ...l......~.,~.~.....I ........ 

2.4. Pseudo-absorption model 

From the point of view of experiment [I] we are interested in the limit where the 
backscattering in the disordered lead is relatively strong, and the disordered lead is only 
weakly sensitive to the inner edge state coming from the sample, As the simplest model 
containing the relevant physics, we consider just this inner edge state, and ask how many of 
the electrons which are incident in the inner edge state on the disordered lead are reflected 
back from the lead without being scattered into one of the outer edge states. The electrons 
which are scattered into the outer edge states are assumed to make contact with the reservoir. 
In an infinitely long lead all the other electrons are backscattered by the lead: in a finite lead 
some elechwns will reach the reservoir directly via the inner edge states, and we consider 
the effect of this in the next section. We now show that this model gives the same square 
root dependence of the ratio of the response to the inner edge state upon the ratio between 
the interedge scattering and the backscattering rates as the full model. 

Figure (6) shows the system we are considering. We model scanering into the outer 
edge states by a pseudo-absorption rate, up. representing the removal of electrons from the 
set that will be reflected back. up describes the same process as the interedge state scattering 
rate, a.  in the previous sections. Electrons are hansmitted from one section to the next with 
a rate r .  We write the equations in terms of a transmission and absorption rate per unit time 
rather than a rate per unit length as in the previous section, since this gives the simplest set 
of equations, and is sufficient for understanding the behaviour qualitatively. We consider a 
voltage lead, so that equal currenb are flowing in each direction, and we can describe the 
current in each section by a single variable, Jn. The steady state solution, which is what we 
are interested in, is then determined by 

- apJ, f t(Jn+l + J,-I - 25,) = 0. (15) 

There are two homogeneous solutions to the recurrence relation (15), 

Jn = J exp(3zxn) (16) 

where 
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The unabsorbed current decays into the lead, so the relevant solution has the minus sign. 
At the sample end of the lead we have some incoming current, Jo. The outgoing current, 
J,, is then rJ1, where 

31 = Jo exp K (18) 

plus the current, (1 - t )Jo ,  that was reflected directly by the wire. The total current being 
absorbed is therefore 

J, = Jo - J, = Jo - ((1 - t ) J o  - ~ J I )  = tJo (1 -e-') 

- up 
2 

In the limit where a, + 0 this becomes Ja = t&Jo + O(a,) and we find the square root 
dependence again, which we see comes from the dispersion relation. 

2.5. Finite-size eflects 

For a lead which is short compared to the decay length of L = 1 / ~  (or the corresponding 
length in the fuller model) there will be corrections to the ratio of sensitivities, since we 
expect that there will be some direct transmission of the inner edge state to the reservoir, 
thus increasing its coupling to the reservoir. Figure (7) shows how the sensitivity of a 
voltage reservoir to different modes changes as a function of the length of the wire. The 
effect of the finite length of the lead is to increase the coupling of the reservoir to the inner 
edge state. 

Figure 7. Relative occupation of edge states by a current lead as a function of its length in 
slices for different ratios I = a/b. b is held fixed at 0.1. 

In the pseudo-absorption model we can calculate exactly the total current either absorbed 
in the lead or reaching the reservoir, and we find 
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Note that the correction is exponential in the length of the lead because of the pseudo- 
absorption term. For a lead of length L with no absorption, the probability of an electron 
reaching the far end goes as 1/L, giving a resistance proportional to the length. In this 
paper we are not interested in the total resistance of the lead, but in its relative sensitivity 
to electrons in different edge states, and for a long wire this is a property of the end of the 
lead, where it joins the sample. 

3. Temperature dependences 

We do not attempt here a detailed discussion of the temperature dependence seen 
experimentally, but rather we just make some qualitative observations. 

Geim etal [ I ]  have observed the Shubnikov-de Haas resistance oscillations in a sample 
consisting of a thin, clean wire fed by disordered leads. The Shubnikov-de Haas oscillations 
are understood to occur by resonant tunnelling [9] between the oppositely directed inner 
edge states within the clean wire. The size of the resistance oscillations seen is then a 
measure of the population of the inner edge state by the leads: the wire is short enough 
that, especially in the region of the oscillations. interedge scattering within the relatively 
clean wire is weak. Geim era1 found the amplitude of the oscillations to be proportional to 
exp(-or TI) close to the maximum of the Shubnikov-de Haas oscillations, and proportional 
to exp(-rY ?+Itz) further away. 

In the weak-scattering limit, that is interedge and back scattering lengths that are long 
compared to the width of the wire, we have seen that the occupation of the inner edge state 
is controlled by the ratio of the interedge scattering rate to the backscattering rate. The 
suppression of the occupation of the inner edge state at low temperatures can be understood 
in this picture if the interedge scattering rate is small compared with the backscattering rate 
at low temperatures. It is known [4, 5, 61 that the interedge state scattering rate is strongly 
temperature dependent, chiefly because of the increasing overlap between the edge states as 
the energy is increased I6.71. The energy and temperature dependence of the backscattering 
is less well understood. Empirically [IO, 111 a dependence of the form of exp(-or TI/*) 
has been found, and several theoretical explanations of this behaviour have been proposed 
[12, 13, 141. To explain the experiments the interedge scattering rate must increase faster 
than this. However in reality, whilst some mechanisms of interedge state scattering produce 
an exp(-a T-'/*) behaviour, at low temperatures the interedge state scattering rate increases 
linearly [6]. 

A full explanation of the experiments of Geim etal requires us to recognise that, because 
the experiments use the Shubnikov-de Haas oscillations in a wire with similar properties to 
the lead, but with less disorder, as a probe of the occupation of the different edge states, we 
are interested especially in the region where the inner edge state is just starting to propagate 
in the lead. The model described in this paper has limited validity in that case, because 
the backscattering length eventually becomes short compared with the width of the wire. 
The theories for the interedge state scattering rate also assume that the system is far enough 
away from the transition that the edge states are well defined. 

Consistent with the picture in this paper that the relative magnitude of interedge 
scattering and backscattering is important, Geim et al find that in samples where the leads 
consist of clean wire (that is with the same disorder as in the bulk of the sample) the 
suppression of the Shubnikov-de Haas oscillations is much smaller, that is, the occupation 
of the inner edge state is larger. For a sample where the leads consist of a clean wires 
which widens rapidly so that backscattering in the wire is reduced further, the oscillations 
are still less suppressed. 
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4. Conclusions 

We have presented an analysis of edge states propagating in a disordered lead, and 
shown how backscattering leads to a non-equilibrium occupation of the edge states, and 
an unequal sensitivity to different edge states incident on the lead. We have indicated 
qualitatively how changes i n  the backscattering and interedge scattering rates can lead to 
the experimentally observed dependence on geometry and disorder. While we have indicated 
how the temperature dependence of the Shubnikov-de Haas oscillations might be explained 
within this model of weak disorder, the necessary variations of the scattering rates seem 
implausible. 

The model of edge states with scattering between them breaks down if the disorder, and 
so backscattering, is too large. Close enough to the point where an edge state is ceasing 
to propagate this will always be true. and we consider this regime in the following paper, 
where we explain qualitatively the experimental temperature dependence. 

Acknowledgments 

The author thanks Dr A K Geim for introducing him to this problem, and Dr E A Johnson 
for reading critically a draft of this paper. This work was supported by the SERC. 

References 

[I] Geim A K, Main P C, Taboryski R, Carmona H, Brown C V, Foster T J, Oakeshott R B S and Veje E 1994 

[2] Bii~tker M 1988 Phys. Rev. B 38 9375 
131 Komiyama S and Hirai H 1989 Phys. Rev. B 40 7767 
141 McEuen P L, Foxman E E, Meirav U, Kastner M A, Meir Y and Wingreen N S 1991 Phys. Rev. Lett. 66 

[51 Martin T and Feng S 1990 Phys. Rev Lett. 60 1971 
161 Komiyama S, Himi H, Oshawa M. Sasa S and Fujii T 1992 Phys. Rev. B 45 1 I085 
[7] Maslov D L, Levinson Y B and Badalian S M 1992 Phys. Rev. B 46 7002 
[8] Blaikie R J. N-0 K. Cleaver I R A and Ahmed H 1992 Phys. Rev. B 46 9796 
[9] Jain J K and Kivelson S 1988 Phys. Rev. B 37 4'276 
[IO] Ebert G, yon Klitzing K, Probst C. Schuberth E, Ploog K and Weimann G 1983 Solid Srate Cmmun. 45 

[I I ]  Briggs A, Guldner Y, Vieran J P, Voos M. H i m  J P and Rareghi M 1983 P/ys, Rev. B 27 6549 
[l?] Ono Y 1982 3. P/iys. Soc. Japan 51 237 
1131 Polyakov D G and Shklovskii B I 1993 Phys. Rev. Lett. 70 3796 
1141 zhao H Land Feng S 1993 Phys. Rev. Lett. 70 4134 

Solid-Slate Electron. 37 1005-9 

1926 

625 


